講演抄録/キーワード |
講演名 |
2022-02-21 15:35
Liver Tumor Segmentation by Using a Massive-Training Artificial Neural Network (MTANN) and its Analysis in Liver CT. ○Yuqiao Yang・Muneyuki Sato・Ze Jin・Kenji Suzuki(Tokyo Tech) |
抄録 |
(和) |
Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available. |
(英) |
Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available. |
キーワード |
(和) |
deep learning / small-sample-size / medical image / semantic segmentation / / / / |
(英) |
deep learning / small-sample-size / medical image / semantic segmentation / / / / |
文献情報 |
映情学技報 |
資料番号 |
|
発行日 |
|
ISSN |
|
PDFダウンロード |
|