映像情報メディア学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2022-02-21 15:35
Liver Tumor Segmentation by Using a Massive-Training Artificial Neural Network (MTANN) and its Analysis in Liver CT.
Yuqiao YangMuneyuki SatoZe JinKenji SuzukiTokyo Tech
抄録 (和) Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available. 
(英) Based on a 3D massive-training artificial neural network (MTANN) combined with a Hessian-based ellipse enhancer, a small-sample-size deep learning technique for semantic segmentation of liver tumors in contrast-enhanced CT is proposed. To show the proposed model's efficiency in a small-sample size dataset, we trained the proposed models with only 7 tumors from 7 patients, and 14 tumors from 12 patients. The proposed model achieved a Dice score of 0.703 with the training set of 12 patients. The accuracy was comparable to the CNN-based method with 131 patients in the MICCAI 2017 competition. The proposed model is essential in deep learning applications in medical imaging where a large database is not available.
キーワード (和) deep learning / small-sample-size / medical image / semantic segmentation / / / /  
(英) deep learning / small-sample-size / medical image / semantic segmentation / / / /  
文献情報 映情学技報
資料番号  
発行日  
ISSN  
PDFダウンロード

研究会情報
研究会 AIT ME MMS IEICE-IE IEICE-ITS  
開催期間 2022-02-21 - 2022-02-22 
開催地(和) オンライン開催 
開催地(英) online 
テーマ(和) 画像処理、一般 
テーマ(英)  
講演論文情報の詳細
申込み研究会 IEICE-IE 
会議コード 2022-02-IE-ITS-AIT-ME-MMS 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) Liver Tumor Segmentation by Using a Massive-Training Artificial Neural Network (MTANN) and its Analysis in Liver CT. 
サブタイトル(英)  
キーワード(1)(和/英) deep learning / deep learning  
キーワード(2)(和/英) small-sample-size / small-sample-size  
キーワード(3)(和/英) medical image / medical image  
キーワード(4)(和/英) semantic segmentation / semantic segmentation  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) Yuqiao Yang / Yuqiao Yang /
第1著者 所属(和/英) Tokyo Institute of Technology (略称: Tokyo Tech)
Tokyo Institute of Technology (略称: Tokyo Tech)
第2著者 氏名(和/英/ヨミ) Muneyuki Sato / Muneyuki Sato /
第2著者 所属(和/英) Tokyo Institute of Technology (略称: Tokyo Tech)
Tokyo Institute of Technology (略称: Tokyo Tech)
第3著者 氏名(和/英/ヨミ) Ze Jin / Ze Jin /
第3著者 所属(和/英) Tokyo Institute of Technology (略称: Tokyo Tech)
Tokyo Institute of Technology (略称: Tokyo Tech)
第4著者 氏名(和/英/ヨミ) Kenji Suzuki / Kenji Suzuki /
第4著者 所属(和/英) Tokyo Institute of Technology (略称: Tokyo Tech)
Tokyo Institute of Technology (略称: Tokyo Tech)
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者 第1著者 
発表日時 2022-02-21 15:35:00 
発表時間 15分 
申込先研究会 IEICE-IE 
資料番号  
巻番号(vol) vol.46 
号番号(no)  
ページ範囲  
ページ数  
発行日  


[研究会発表申込システムのトップページに戻る]

[映像情報メディア学会ホームページ]


ITE / 映像情報メディア学会