講演抄録/キーワード |
講演名 |
2020-02-27 16:20
ゴム材料の配合量を用いたAC-GANに基づく電子顕微鏡画像の生成に関する一検討 ○金井美岬・藤後 廉・小川貴弘・長谷山美紀(北大) |
抄録 |
(和) |
本文では,配合する原料およびその配合量 (以降,配合データ) を用いたゴム材料の内部構造を表現する画像生成について検討を行う.提案手法では,電子顕微鏡を用いて高倍率でゴム材料を撮像した画像とその配合データの組を用いて,条件付き画像生成手法の一つである auxiliary classifier generative adversarial network (AC-GAN) の学習を行う.提案手法により,ゴム材料を試作することなく,その内部構造を推定可能となり,ゴム材料の開発におけるコストと時間の削減が期待できる.また,提案手法により生成された画像と実画像を比較する実験により,提案手法の有効性を検証する. |
(英) |
In this paper, we investigate a method for generation of images that represent the internal structure of rubber materials using mix proportions. In the proposed method, we train an auxiliary classifier generative adversarial network (AC–GAN), one of conditional image generation methods, with pairs of images of rubber materials and their mix proportions. The proposed method can reduce time and cost in conventional development of rubber materials by estimating the internal structure of rubber materials without trial production. Furthermore, we verify the effectiveness of the proposed method through experiments that compare the images generated by the proposed method and the real images. |
キーワード |
(和) |
ゴム材料 / 電子顕微鏡画像 / 敵対的生成ネットワーク / / / / / |
(英) |
Rubber materials / electron microscope images / generative adversarial network / / / / / |
文献情報 |
映情学技報, vol. 44, no. 6, ME2020-49, pp. 107-111, 2020年2月. |
資料番号 |
ME2020-49 |
発行日 |
2020-02-20 (MMS, HI, ME, AIT) |
ISSN |
Print edition: ISSN 1342-6893 Online edition: ISSN 2424-1970 |
PDFダウンロード |
|
研究会情報 |
研究会 |
HI IEICE-IE IEICE-ITS MMS ME AIT |
開催期間 |
2020-02-27 - 2020-02-28 |
開催地(和) |
北海道大学 |
開催地(英) |
Hokkaido Univ. |
テーマ(和) |
画像処理および一般 |
テーマ(英) |
Image Processing, etc. |
講演論文情報の詳細 |
申込み研究会 |
ME |
会議コード |
2020-02-HI-IE-ITS-MMS-ME-AIT |
本文の言語 |
日本語 |
タイトル(和) |
ゴム材料の配合量を用いたAC-GANに基づく電子顕微鏡画像の生成に関する一検討 |
サブタイトル(和) |
|
タイトル(英) |
A Note on Generation of Electron Microscope Images via Auxiliary Classifier Generative Adversarial Network with Mix Proportions |
サブタイトル(英) |
|
キーワード(1)(和/英) |
ゴム材料 / Rubber materials |
キーワード(2)(和/英) |
電子顕微鏡画像 / electron microscope images |
キーワード(3)(和/英) |
敵対的生成ネットワーク / generative adversarial network |
キーワード(4)(和/英) |
/ |
キーワード(5)(和/英) |
/ |
キーワード(6)(和/英) |
/ |
キーワード(7)(和/英) |
/ |
キーワード(8)(和/英) |
/ |
第1著者 氏名(和/英/ヨミ) |
金井 美岬 / Misaki Kanai / カナイ ミサキ |
第1著者 所属(和/英) |
北海道大学 (略称: 北大)
Hokkaido University (略称: Hokkaido Univ.) |
第2著者 氏名(和/英/ヨミ) |
藤後 廉 / Ren Togo / トウゴ レン |
第2著者 所属(和/英) |
北海道大学 (略称: 北大)
Hokkaido University (略称: Hokkaido Univ.) |
第3著者 氏名(和/英/ヨミ) |
小川 貴弘 / Takahiro Ogawa / オガワ タカヒロ |
第3著者 所属(和/英) |
北海道大学 (略称: 北大)
Hokkaido University (略称: Hokkaido Univ.) |
第4著者 氏名(和/英/ヨミ) |
長谷山 美紀 / Miki Haseyama / ハセヤマ ミキ |
第4著者 所属(和/英) |
北海道大学 (略称: 北大)
Hokkaido University (略称: Hokkaido Univ.) |
第5著者 氏名(和/英/ヨミ) |
/ / |
第5著者 所属(和/英) |
(略称: )
(略称: ) |
第6著者 氏名(和/英/ヨミ) |
/ / |
第6著者 所属(和/英) |
(略称: )
(略称: ) |
第7著者 氏名(和/英/ヨミ) |
/ / |
第7著者 所属(和/英) |
(略称: )
(略称: ) |
第8著者 氏名(和/英/ヨミ) |
/ / |
第8著者 所属(和/英) |
(略称: )
(略称: ) |
第9著者 氏名(和/英/ヨミ) |
/ / |
第9著者 所属(和/英) |
(略称: )
(略称: ) |
第10著者 氏名(和/英/ヨミ) |
/ / |
第10著者 所属(和/英) |
(略称: )
(略称: ) |
第11著者 氏名(和/英/ヨミ) |
/ / |
第11著者 所属(和/英) |
(略称: )
(略称: ) |
第12著者 氏名(和/英/ヨミ) |
/ / |
第12著者 所属(和/英) |
(略称: )
(略称: ) |
第13著者 氏名(和/英/ヨミ) |
/ / |
第13著者 所属(和/英) |
(略称: )
(略称: ) |
第14著者 氏名(和/英/ヨミ) |
/ / |
第14著者 所属(和/英) |
(略称: )
(略称: ) |
第15著者 氏名(和/英/ヨミ) |
/ / |
第15著者 所属(和/英) |
(略称: )
(略称: ) |
第16著者 氏名(和/英/ヨミ) |
/ / |
第16著者 所属(和/英) |
(略称: )
(略称: ) |
第17著者 氏名(和/英/ヨミ) |
/ / |
第17著者 所属(和/英) |
(略称: )
(略称: ) |
第18著者 氏名(和/英/ヨミ) |
/ / |
第18著者 所属(和/英) |
(略称: )
(略称: ) |
第19著者 氏名(和/英/ヨミ) |
/ / |
第19著者 所属(和/英) |
(略称: )
(略称: ) |
第20著者 氏名(和/英/ヨミ) |
/ / |
第20著者 所属(和/英) |
(略称: )
(略称: ) |
第21著者 氏名(和/英/ヨミ) |
/ / |
第21著者 所属(和/英) |
(略称: )
(略称: ) |
第22著者 氏名(和/英/ヨミ) |
/ / |
第22著者 所属(和/英) |
(略称: )
(略称: ) |
第23著者 氏名(和/英/ヨミ) |
/ / |
第23著者 所属(和/英) |
(略称: )
(略称: ) |
第24著者 氏名(和/英/ヨミ) |
/ / |
第24著者 所属(和/英) |
(略称: )
(略称: ) |
第25著者 氏名(和/英/ヨミ) |
/ / |
第25著者 所属(和/英) |
(略称: )
(略称: ) |
第26著者 氏名(和/英/ヨミ) |
/ / |
第26著者 所属(和/英) |
(略称: )
(略称: ) |
第27著者 氏名(和/英/ヨミ) |
/ / |
第27著者 所属(和/英) |
(略称: )
(略称: ) |
第28著者 氏名(和/英/ヨミ) |
/ / |
第28著者 所属(和/英) |
(略称: )
(略称: ) |
第29著者 氏名(和/英/ヨミ) |
/ / |
第29著者 所属(和/英) |
(略称: )
(略称: ) |
第30著者 氏名(和/英/ヨミ) |
/ / |
第30著者 所属(和/英) |
(略称: )
(略称: ) |
第31著者 氏名(和/英/ヨミ) |
/ / |
第31著者 所属(和/英) |
(略称: )
(略称: ) |
第32著者 氏名(和/英/ヨミ) |
/ / |
第32著者 所属(和/英) |
(略称: )
(略称: ) |
第33著者 氏名(和/英/ヨミ) |
/ / |
第33著者 所属(和/英) |
(略称: )
(略称: ) |
第34著者 氏名(和/英/ヨミ) |
/ / |
第34著者 所属(和/英) |
(略称: )
(略称: ) |
第35著者 氏名(和/英/ヨミ) |
/ / |
第35著者 所属(和/英) |
(略称: )
(略称: ) |
第36著者 氏名(和/英/ヨミ) |
/ / |
第36著者 所属(和/英) |
(略称: )
(略称: ) |
講演者 |
第1著者 |
発表日時 |
2020-02-27 16:20:00 |
発表時間 |
15分 |
申込先研究会 |
ME |
資料番号 |
MMS2020-21, HI2020-21, ME2020-49, AIT2020-21 |
巻番号(vol) |
vol.44 |
号番号(no) |
no.6 |
ページ範囲 |
pp.107-111 |
ページ数 |
5 |
発行日 |
2020-02-20 (MMS, HI, ME, AIT) |
|